Partially Bayesian variable selection in classification trees
نویسندگان
چکیده
منابع مشابه
Variable Selection in Classification Trees Based on Imprecise Probabilities
Classification trees are a popular statistical tool with multiple applications. Recent advancements of traditional classification trees, such as the approach of classification trees based on imprecise probabilities by Abellán and Moral (2004), effectively address their tendency to overfitting. However, another flaw inherent in traditional classification trees is not eliminated by the imprecise ...
متن کاملVariable Selection Bias in Classification Trees Based on Imprecise Probabilities
Classification trees are a popular statistical tool with multiple applications. Recent advancements of traditional classification trees, such as the approach of classification trees based on imprecise probabilities by Abellán and Moral (2005), effectively address their tendency to overfitting. However, another flaw inherent in traditional classification trees is not eliminated by the imprecise ...
متن کاملBayesian variable selection for disease classification using gene expression data
MOTIVATION An important application of gene expression microarray data is the classification of samples into categories. Accurate classification depends upon the method used to identify the most relevant genes. Owing to the large number of genes and relatively small sample size, the selection process can be unstable. Modification of existing methods for achieving better analysis of microarray d...
متن کاملBayesian recursive variable selection
In this work we introduce a new model space prior for Bayesian variable selection in linear regression. This prior is designed based on a recursive constructive procedure that randomly generates models by including variables in a stagewise fashion. We provide a recipe for carrying out Bayesian variable selection and model averaging using this prior, and show that it possesses several desirable ...
متن کاملBayesian Shrinkage Variable Selection
We introduce a new Bayesian approach to the variable selection problem which we term Bayesian Shrinkage Variable Selection (BSVS ). This approach is inspired by the Relevance Vector Machine (RVM ), which uses a Bayesian hierarchical linear setup to do variable selection and model estimation. RVM is typically applied in the context of kernel regression although it is also suitable in the standar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Its Interface
سال: 2008
ISSN: 1938-7989,1938-7997
DOI: 10.4310/sii.2008.v1.n1.a13